%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/lib/rbenv/versions/3.2.2/lib64/ruby/gems/3.2.0/gems/rbs-2.8.2/stdlib/prime/0/
Upload File :
Create Path :
Current File : /var/lib/rbenv/versions/3.2.2/lib64/ruby/gems/3.2.0/gems/rbs-2.8.2/stdlib/prime/0/prime.rbs

# <!-- rdoc-file=lib/prime.rb -->
# The set of all prime numbers.
#
# ## Example
#
#     Prime.each(100) do |prime|
#       p prime  #=> 2, 3, 5, 7, 11, ...., 97
#     end
#
# Prime is Enumerable:
#
#     Prime.first 5 # => [2, 3, 5, 7, 11]
#
# ## Retrieving the instance
#
# For convenience, each instance method of `Prime`.instance can be accessed as a
# class method of `Prime`.
#
# e.g.
#     Prime.instance.prime?(2)  #=> true
#     Prime.prime?(2)           #=> true
#
# ## Generators
#
# A "generator" provides an implementation of enumerating pseudo-prime numbers
# and it remembers the position of enumeration and upper bound. Furthermore, it
# is an external iterator of prime enumeration which is compatible with an
# Enumerator.
#
# `Prime`::`PseudoPrimeGenerator` is the base class for generators. There are
# few implementations of generator.
#
# `Prime`::`EratosthenesGenerator`
# :   Uses Eratosthenes' sieve.
# `Prime`::`TrialDivisionGenerator`
# :   Uses the trial division method.
# `Prime`::`Generator23`
# :   Generates all positive integers which are not divisible by either 2 or 3.
#     This sequence is very bad as a pseudo-prime sequence. But this is faster
#     and uses much less memory than the other generators. So, it is suitable
#     for factorizing an integer which is not large but has many prime factors.
#     e.g. for Prime#prime? .
#
class Prime
  include Singleton

  include Enumerable[Integer]

  extend Enumerable[Integer]

  # <!--
  #   rdoc-file=lib/prime.rb
  #   - each(ubound = nil, generator = EratosthenesGenerator.new, &block)
  # -->
  # Iterates the given block over all prime numbers.
  #
  # ## Parameters
  #
  # `ubound`
  # :   Optional. An arbitrary positive number. The upper bound of enumeration.
  #     The method enumerates prime numbers infinitely if `ubound` is nil.
  # `generator`
  # :   Optional. An implementation of pseudo-prime generator.
  #
  #
  # ## Return value
  #
  # An evaluated value of the given block at the last time. Or an enumerator which
  # is compatible to an `Enumerator` if no block given.
  #
  # ## Description
  #
  # Calls `block` once for each prime number, passing the prime as a parameter.
  #
  # `ubound`
  # :   Upper bound of prime numbers. The iterator stops after it yields all prime
  #     numbers p <= `ubound`.
  #
  def self.each: (?Integer? ubound, ?PseudoPrimeGenerator generator) { (Integer) -> void } -> void
                | (?Integer? ubound, ?PseudoPrimeGenerator generator) -> PseudoPrimeGenerator

  # <!--
  #   rdoc-file=lib/prime.rb
  #   - each(ubound = nil, generator = EratosthenesGenerator.new, &block)
  # -->
  # Iterates the given block over all prime numbers.
  #
  # ## Parameters
  #
  # `ubound`
  # :   Optional. An arbitrary positive number. The upper bound of enumeration.
  #     The method enumerates prime numbers infinitely if `ubound` is nil.
  # `generator`
  # :   Optional. An implementation of pseudo-prime generator.
  #
  #
  # ## Return value
  #
  # An evaluated value of the given block at the last time. Or an enumerator which
  # is compatible to an `Enumerator` if no block given.
  #
  # ## Description
  #
  # Calls `block` once for each prime number, passing the prime as a parameter.
  #
  # `ubound`
  # :   Upper bound of prime numbers. The iterator stops after it yields all prime
  #     numbers p <= `ubound`.
  #
  def each: (?Integer? ubound, ?PseudoPrimeGenerator generator) { (Integer) -> void } -> void
          | (?Integer? ubound, ?PseudoPrimeGenerator generator) -> PseudoPrimeGenerator

  # <!--
  #   rdoc-file=lib/prime.rb
  #   - int_from_prime_division(pd)
  # -->
  # Re-composes a prime factorization and returns the product.
  #
  # For the decomposition:
  #
  #     [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]],
  #
  # it returns:
  #
  #     p_1**e_1 * p_2**e_2 * ... * p_n**e_n.
  #
  # ## Parameters
  # `pd`
  # :   Array of pairs of integers. Each pair consists of a prime number -- a
  #     prime factor -- and a natural number -- its exponent (multiplicity).
  #
  #
  # ## Example
  #     Prime.int_from_prime_division([[3, 2], [5, 1]])  #=> 45
  #     3**2 * 5                                         #=> 45
  #
  def self.int_from_prime_division: (Array[[ Integer, Integer ]]) -> Integer

  # <!--
  #   rdoc-file=lib/prime.rb
  #   - int_from_prime_division(pd)
  # -->
  # Re-composes a prime factorization and returns the product.
  #
  # For the decomposition:
  #
  #     [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]],
  #
  # it returns:
  #
  #     p_1**e_1 * p_2**e_2 * ... * p_n**e_n.
  #
  # ## Parameters
  # `pd`
  # :   Array of pairs of integers. Each pair consists of a prime number -- a
  #     prime factor -- and a natural number -- its exponent (multiplicity).
  #
  #
  # ## Example
  #     Prime.int_from_prime_division([[3, 2], [5, 1]])  #=> 45
  #     3**2 * 5                                         #=> 45
  #
  def int_from_prime_division: (Array[[ Integer, Integer ]]) -> Integer

  # <!--
  #   rdoc-file=lib/prime.rb
  #   - prime?(value, generator = Prime::Generator23.new)
  # -->
  # Returns true if `value` is a prime number, else returns false. Integer#prime?
  # is much more performant.
  #
  # ## Parameters
  #
  # `value`
  # :   an arbitrary integer to be checked.
  # `generator`
  # :   optional. A pseudo-prime generator.
  #
  def self.prime?: (Integer value, ?PseudoPrimeGenerator generator) -> bool

  # <!--
  #   rdoc-file=lib/prime.rb
  #   - prime?(value, generator = Prime::Generator23.new)
  # -->
  # Returns true if `value` is a prime number, else returns false. Integer#prime?
  # is much more performant.
  #
  # ## Parameters
  #
  # `value`
  # :   an arbitrary integer to be checked.
  # `generator`
  # :   optional. A pseudo-prime generator.
  #
  def prime?: (Integer value, ?PseudoPrimeGenerator generator) -> bool

  # <!--
  #   rdoc-file=lib/prime.rb
  #   - prime_division(value, generator = Prime::Generator23.new)
  # -->
  # Returns the factorization of `value`.
  #
  # For an arbitrary integer:
  #
  #     p_1**e_1 * p_2**e_2 * ... * p_n**e_n,
  #
  # prime_division returns an array of pairs of integers:
  #
  #     [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]].
  #
  # Each pair consists of a prime number -- a prime factor -- and a natural number
  # -- its exponent (multiplicity).
  #
  # ## Parameters
  # `value`
  # :   An arbitrary integer.
  # `generator`
  # :   Optional. A pseudo-prime generator. `generator`.succ must return the next
  #     pseudo-prime number in ascending order. It must generate all prime
  #     numbers, but may also generate non-prime numbers, too.
  #
  #
  # ### Exceptions
  # `ZeroDivisionError`
  # :   when `value` is zero.
  #
  #
  # ## Example
  #
  #     Prime.prime_division(45)  #=> [[3, 2], [5, 1]]
  #     3**2 * 5                  #=> 45
  #
  def self.prime_division: (Integer, ?PseudoPrimeGenerator generator) -> Array[[ Integer, Integer ]]

  # <!--
  #   rdoc-file=lib/prime.rb
  #   - prime_division(value, generator = Prime::Generator23.new)
  # -->
  # Returns the factorization of `value`.
  #
  # For an arbitrary integer:
  #
  #     p_1**e_1 * p_2**e_2 * ... * p_n**e_n,
  #
  # prime_division returns an array of pairs of integers:
  #
  #     [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]].
  #
  # Each pair consists of a prime number -- a prime factor -- and a natural number
  # -- its exponent (multiplicity).
  #
  # ## Parameters
  # `value`
  # :   An arbitrary integer.
  # `generator`
  # :   Optional. A pseudo-prime generator. `generator`.succ must return the next
  #     pseudo-prime number in ascending order. It must generate all prime
  #     numbers, but may also generate non-prime numbers, too.
  #
  #
  # ### Exceptions
  # `ZeroDivisionError`
  # :   when `value` is zero.
  #
  #
  # ## Example
  #
  #     Prime.prime_division(45)  #=> [[3, 2], [5, 1]]
  #     3**2 * 5                  #=> 45
  #
  def prime_division: (Integer, ?PseudoPrimeGenerator generator) -> Array[[ Integer, Integer ]]

  # Returns the singleton instance.
  #
  def self.instance: () -> Prime

  # <!-- rdoc-file=lib/prime.rb -->
  # An abstract class for enumerating pseudo-prime numbers.
  #
  # Concrete subclasses should override succ, next, rewind.
  #
  class PseudoPrimeGenerator
    # <!--
    #   rdoc-file=lib/prime.rb
    #   - new(ubound = nil)
    # -->
    #
    def initialize: (?Integer?) -> void

    include Enumerable[Integer]

    # <!--
    #   rdoc-file=lib/prime.rb
    #   - upper_bound()
    # -->
    # ----
    # <!--
    #   rdoc-file=lib/prime.rb
    #   - upper_bound=(ubound)
    # -->
    #
    attr_accessor upper_bound(): Integer?

    # <!--
    #   rdoc-file=lib/prime.rb
    #   - each() { |prime| ... }
    # -->
    # Iterates the given block for each prime number.
    #
    def each: () { (Integer) -> void } -> void

    # <!--
    #   rdoc-file=lib/prime.rb
    #   - next()
    # -->
    # alias of `succ`.
    #
    def next: () -> Integer

    # <!--
    #   rdoc-file=lib/prime.rb
    #   - rewind()
    # -->
    # Rewinds the internal position for enumeration.
    #
    # See `Enumerator`#rewind.
    #
    def rewind: () -> void

    # <!--
    #   rdoc-file=lib/prime.rb
    #   - size()
    # -->
    #
    def size: () -> Float

    # <!--
    #   rdoc-file=lib/prime.rb
    #   - succ()
    # -->
    # returns the next pseudo-prime number, and move the internal position forward.
    #
    # `PseudoPrimeGenerator`#succ raises `NotImplementedError`.
    #
    def succ: () -> Integer
  end

  # <!-- rdoc-file=lib/prime.rb -->
  # An implementation of `PseudoPrimeGenerator`.
  #
  # Uses `EratosthenesSieve`.
  #
  class EratosthenesGenerator < PseudoPrimeGenerator
  end

  # <!-- rdoc-file=lib/prime.rb -->
  # An implementation of `PseudoPrimeGenerator` which uses a prime table generated
  # by trial division.
  #
  class TrialDivisionGenerator < PseudoPrimeGenerator
  end

  # <!-- rdoc-file=lib/prime.rb -->
  # Generates all integers which are greater than 2 and are not divisible by
  # either 2 or 3.
  #
  # This is a pseudo-prime generator, suitable on checking primality of an integer
  # by brute force method.
  #
  class Generator23 < PseudoPrimeGenerator
  end
end

Zerion Mini Shell 1.0