%PDF- %PDF-
Direktori : /usr/lib/python2.7/site-packages/salt/modules/ |
Current File : //usr/lib/python2.7/site-packages/salt/modules/sysbench.py |
# -*- coding: utf-8 -*- ''' The 'sysbench' module is used to analyze the performance of the minions, right from the master! It measures various system parameters such as CPU, Memory, File I/O, Threads and Mutex. ''' from __future__ import absolute_import, unicode_literals, print_function import re import salt.utils.path from salt.ext.six.moves import zip def __virtual__(): ''' loads the module, if only sysbench is installed ''' # finding the path of the binary if salt.utils.path.which('sysbench'): return 'sysbench' return (False, 'The sysbench execution module failed to load: the sysbench binary is not in the path.') def _parser(result): ''' parses the output into a dictionary ''' # regexes to match _total_time = re.compile(r'total time:\s*(\d*.\d*s)') _total_execution = re.compile(r'event execution:\s*(\d*.\d*s?)') _min_response_time = re.compile(r'min:\s*(\d*.\d*ms)') _max_response_time = re.compile(r'max:\s*(\d*.\d*ms)') _avg_response_time = re.compile(r'avg:\s*(\d*.\d*ms)') _per_response_time = re.compile(r'95 percentile:\s*(\d*.\d*ms)') # extracting data total_time = re.search(_total_time, result).group(1) total_execution = re.search(_total_execution, result).group(1) min_response_time = re.search(_min_response_time, result).group(1) max_response_time = re.search(_max_response_time, result).group(1) avg_response_time = re.search(_avg_response_time, result).group(1) per_response_time = re.search(_per_response_time, result) if per_response_time is not None: per_response_time = per_response_time.group(1) # returning the data as dictionary return { 'total time': total_time, 'total execution time': total_execution, 'minimum response time': min_response_time, 'maximum response time': max_response_time, 'average response time': avg_response_time, '95 percentile': per_response_time } def cpu(): ''' Tests for the CPU performance of minions. CLI Examples: .. code-block:: bash salt '*' sysbench.cpu ''' # Test data max_primes = [500, 1000, 2500, 5000] # Initializing the test variables test_command = 'sysbench --test=cpu --cpu-max-prime={0} run' result = None ret_val = {} # Test beings! for primes in max_primes: key = 'Prime numbers limit: {0}'.format(primes) run_command = test_command.format(primes) result = __salt__['cmd.run'](run_command) ret_val[key] = _parser(result) return ret_val def threads(): ''' This tests the performance of the processor's scheduler CLI Example: .. code-block:: bash salt '*' sysbench.threads ''' # Test data thread_yields = [100, 200, 500, 1000] thread_locks = [2, 4, 8, 16] # Initializing the test variables test_command = 'sysbench --num-threads=64 --test=threads ' test_command += '--thread-yields={0} --thread-locks={1} run ' result = None ret_val = {} # Test begins! for yields, locks in zip(thread_yields, thread_locks): key = 'Yields: {0} Locks: {1}'.format(yields, locks) run_command = test_command.format(yields, locks) result = __salt__['cmd.run'](run_command) ret_val[key] = _parser(result) return ret_val def mutex(): ''' Tests the implementation of mutex CLI Examples: .. code-block:: bash salt '*' sysbench.mutex ''' # Test options and the values they take # --mutex-num = [50,500,1000] # --mutex-locks = [10000,25000,50000] # --mutex-loops = [2500,5000,10000] # Test data (Orthogonal test cases) mutex_num = [50, 50, 50, 500, 500, 500, 1000, 1000, 1000] locks = [10000, 25000, 50000, 10000, 25000, 50000, 10000, 25000, 50000] mutex_locks = [] mutex_locks.extend(locks) mutex_loops = [2500, 5000, 10000, 10000, 2500, 5000, 5000, 10000, 2500] # Initializing the test variables test_command = 'sysbench --num-threads=250 --test=mutex ' test_command += '--mutex-num={0} --mutex-locks={1} --mutex-loops={2} run ' result = None ret_val = {} # Test begins! for num, locks, loops in zip(mutex_num, mutex_locks, mutex_loops): key = 'Mutex: {0} Locks: {1} Loops: {2}'.format(num, locks, loops) run_command = test_command.format(num, locks, loops) result = __salt__['cmd.run'](run_command) ret_val[key] = _parser(result) return ret_val def memory(): ''' This tests the memory for read and write operations. CLI Examples: .. code-block:: bash salt '*' sysbench.memory ''' # test defaults # --memory-block-size = 10M # --memory-total-size = 1G # We test memory read / write against global / local scope of memory # Test data memory_oper = ['read', 'write'] memory_scope = ['local', 'global'] # Initializing the test variables test_command = 'sysbench --num-threads=64 --test=memory ' test_command += '--memory-oper={0} --memory-scope={1} ' test_command += '--memory-block-size=1K --memory-total-size=32G run ' result = None ret_val = {} # Test begins! for oper in memory_oper: for scope in memory_scope: key = 'Operation: {0} Scope: {1}'.format(oper, scope) run_command = test_command.format(oper, scope) result = __salt__['cmd.run'](run_command) ret_val[key] = _parser(result) return ret_val def fileio(): ''' This tests for the file read and write operations Various modes of operations are * sequential write * sequential rewrite * sequential read * random read * random write * random read and write The test works with 32 files with each file being 1Gb in size The test consumes a lot of time. Be patient! CLI Examples: .. code-block:: bash salt '*' sysbench.fileio ''' # Test data test_modes = ['seqwr', 'seqrewr', 'seqrd', 'rndrd', 'rndwr', 'rndrw'] # Initializing the required variables test_command = 'sysbench --num-threads=16 --test=fileio ' test_command += '--file-num=32 --file-total-size=1G --file-test-mode={0} ' result = None ret_val = {} # Test begins! for mode in test_modes: key = 'Mode: {0}'.format(mode) # Prepare phase run_command = (test_command + 'prepare').format(mode) __salt__['cmd.run'](run_command) # Test phase run_command = (test_command + 'run').format(mode) result = __salt__['cmd.run'](run_command) ret_val[key] = _parser(result) # Clean up phase run_command = (test_command + 'cleanup').format(mode) __salt__['cmd.run'](run_command) return ret_val def ping(): return True