%PDF- %PDF-
Direktori : /proc/self/root/opt/alt/python27/lib64/python2.7/site-packages/numpy/core/ |
Current File : //proc/self/root/opt/alt/python27/lib64/python2.7/site-packages/numpy/core/shape_base.pyc |
� �9Zc @` s� d d l m Z m Z m Z d d d d d d g Z d d l m Z d d l m Z m Z d � Z d � Z d � Z d � Z d � Z d d � Z d S( i ( t divisiont absolute_importt print_functiont atleast_1dt atleast_2dt atleast_3dt vstackt hstackt stacki ( t numeric( t asanyarrayt newaxisc G` s g } xT | D]L } t | � } t | j � d k rF | j d � } n | } | j | � q Wt | � d k rw | d S| Sd S( s) Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Parameters ---------- arys1, arys2, ... : array_like One or more input arrays. Returns ------- ret : ndarray An array, or sequence of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary. See Also -------- atleast_2d, atleast_3d Examples -------- >>> np.atleast_1d(1.0) array([ 1.]) >>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.]]) >>> np.atleast_1d(x) is x True >>> np.atleast_1d(1, [3, 4]) [array([1]), array([3, 4])] i i N( R t lent shapet reshapet append( t aryst rest aryt result( ( sH /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/shape_base.pyR s ' c G` s� g } x� | D]} } t | � } t | j � d k rI | j d d � } n4 t | j � d k rw | t d d � f } n | } | j | � q Wt | � d k r� | d S| Sd S( sa View inputs as arrays with at least two dimensions. Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have two or more dimensions are preserved. Returns ------- res, res2, ... : ndarray An array, or tuple of arrays, each with ``a.ndim >= 2``. Copies are avoided where possible, and views with two or more dimensions are returned. See Also -------- atleast_1d, atleast_3d Examples -------- >>> np.atleast_2d(3.0) array([[ 3.]]) >>> x = np.arange(3.0) >>> np.atleast_2d(x) array([[ 0., 1., 2.]]) >>> np.atleast_2d(x).base is x True >>> np.atleast_2d(1, [1, 2], [[1, 2]]) [array([[1]]), array([[1, 2]]), array([[1, 2]])] i i N( R R R R R R ( R R R R ( ( sH /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/shape_base.pyR = s % c G` s� g } x� | D]� } t | � } t | j � d k rL | j d d d � } nn t | j � d k r} | t d d � t f } n= t | j � d k r� | d d � d d � t f } n | } | j | � q Wt | � d k r� | d S| Sd S( s� View inputs as arrays with at least three dimensions. Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have three or more dimensions are preserved. Returns ------- res1, res2, ... : ndarray An array, or tuple of arrays, each with ``a.ndim >= 3``. Copies are avoided where possible, and views with three or more dimensions are returned. For example, a 1-D array of shape ``(N,)`` becomes a view of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a view of shape ``(M, N, 1)``. See Also -------- atleast_1d, atleast_2d Examples -------- >>> np.atleast_3d(3.0) array([[[ 3.]]]) >>> x = np.arange(3.0) >>> np.atleast_3d(x).shape (1, 3, 1) >>> x = np.arange(12.0).reshape(4,3) >>> np.atleast_3d(x).shape (4, 3, 1) >>> np.atleast_3d(x).base is x True >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]): ... print(arr, arr.shape) ... [[[1] [2]]] (1, 2, 1) [[[1] [2]]] (1, 2, 1) [[[1 2]]] (1, 1, 2) i i Ni ( R R R R R R ( R R R R ( ( sH /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/shape_base.pyR q s 1 "c C` s) t j g | D] } t | � ^ q d � S( s( Stack arrays in sequence vertically (row wise). Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided by `vsplit`. Parameters ---------- tup : sequence of ndarrays Tuple containing arrays to be stacked. The arrays must have the same shape along all but the first axis. Returns ------- stacked : ndarray The array formed by stacking the given arrays. See Also -------- stack : Join a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise). dstack : Stack arrays in sequence depth wise (along third dimension). concatenate : Join a sequence of arrays along an existing axis. vsplit : Split array into a list of multiple sub-arrays vertically. Notes ----- Equivalent to ``np.concatenate(tup, axis=0)`` if `tup` contains arrays that are at least 2-dimensional. Examples -------- >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]]) >>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a,b)) array([[1], [2], [3], [2], [3], [4]]) i ( t _nxt concatenateR ( t tupt _m( ( sH /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/shape_base.pyR � s 2c C` sV g | D] } t | � ^ q } | d j d k rB t j | d � St j | d � Sd S( s^ Stack arrays in sequence horizontally (column wise). Take a sequence of arrays and stack them horizontally to make a single array. Rebuild arrays divided by `hsplit`. Parameters ---------- tup : sequence of ndarrays All arrays must have the same shape along all but the second axis. Returns ------- stacked : ndarray The array formed by stacking the given arrays. See Also -------- stack : Join a sequence of arrays along a new axis. vstack : Stack arrays in sequence vertically (row wise). dstack : Stack arrays in sequence depth wise (along third axis). concatenate : Join a sequence of arrays along an existing axis. hsplit : Split array along second axis. Notes ----- Equivalent to ``np.concatenate(tup, axis=1)`` Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.hstack((a,b)) array([1, 2, 3, 2, 3, 4]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.hstack((a,b)) array([[1, 2], [2, 3], [3, 4]]) i i N( R t ndimR R ( R R t arrs( ( sH /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/shape_base.pyR � s +c C` s g | D] } t | � ^ q } | s4 t d � � n t d � | D� � } t | � d k rk t d � � n | d j d } | | k o� | k n s� d j | | � } t | � � n | d k r� | | 7} n t d � f | t j f } g | D] } | | ^ q� } t j | d | �S( s� Join a sequence of arrays along a new axis. The `axis` parameter specifies the index of the new axis in the dimensions of the result. For example, if ``axis=0`` it will be the first dimension and if ``axis=-1`` it will be the last dimension. .. versionadded:: 1.10.0 Parameters ---------- arrays : sequence of array_like Each array must have the same shape. axis : int, optional The axis in the result array along which the input arrays are stacked. Returns ------- stacked : ndarray The stacked array has one more dimension than the input arrays. See Also -------- concatenate : Join a sequence of arrays along an existing axis. split : Split array into a list of multiple sub-arrays of equal size. Examples -------- >>> arrays = [np.random.randn(3, 4) for _ in range(10)] >>> np.stack(arrays, axis=0).shape (10, 3, 4) >>> np.stack(arrays, axis=1).shape (3, 10, 4) >>> np.stack(arrays, axis=2).shape (3, 4, 10) >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.stack((a, b)) array([[1, 2, 3], [2, 3, 4]]) >>> np.stack((a, b), axis=-1) array([[1, 2], [2, 3], [3, 4]]) s need at least one array to stackc s` s | ] } | j Vq d S( N( R ( t .0t arr( ( sH /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/shape_base.pys <genexpr>Q s i s) all input arrays must have the same shapei s"