%PDF- %PDF-
Direktori : /proc/self/root/opt/alt/python27/lib64/python2.7/site-packages/numpy/core/ |
Current File : //proc/self/root/opt/alt/python27/lib64/python2.7/site-packages/numpy/core/function_base.pyo |
� �9Zc @` s� d d l m Z m Z m Z d d g Z d d l m Z d d l m Z m Z m Z m Z m Z d e e d d � Z d e d d d � Z d S( i ( t divisiont absolute_importt print_functiont logspacet linspacei ( t numeric( t result_typet NaNt shares_memoryt MAY_SHARE_BOUNDSt TooHardErrori2 c C` sY t | � } | d k r+ t d | � � n | r; | d n | } | d } | d } t | | t | � � } | d k r� | } n t j d | d | �} | | } | d k r� | | } | d k r� | | } | | } q� | | } n t } | | } | | 7} | r#| d k r#| | d <n | rB| j | d t �| f S| j | d t �Sd S( s� Return evenly spaced numbers over a specified interval. Returns `num` evenly spaced samples, calculated over the interval [`start`, `stop`]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, `stop` is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (`samples`, `step`), where `step` is the spacing between samples. dtype : dtype, optional The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. .. versionadded:: 1.9.0 Returns ------- samples : ndarray There are `num` equally spaced samples in the closed interval ``[start, stop]`` or the half-open interval ``[start, stop)`` (depending on whether `endpoint` is True or False). step : float Only returned if `retstep` is True Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). logspace : Samples uniformly distributed in log space. Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() i s, Number of samples, %s, must be non-negative.i g �?t dtypei����t copyN( t intt ValueErrorR t floatt Nonet _nxt arangeR t astypet False( t startt stopt numt endpointt retstepR t divt dtt yt deltat step( ( sK /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/function_base.pyR s2 K g $@c C` sP t | | d | d | �} | d k r7 t j | | � St j | | � j | � S( sj Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Parameters ---------- start : float ``base ** start`` is the starting value of the sequence. stop : float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length ``num``) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. dtype : dtype The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... # doctest: +SKIP >>> power(base, y).astype(dtype) ... # doctest: +SKIP Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([ 100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([ 4. , 5.0396842 , 6.34960421, 8. ]) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() R R N( R R R t powerR ( R R R R t baseR R ( ( sK /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/function_base.pyR � s MN( t __future__R R R t __all__t R R R R R R R t TrueR R R R ( ( ( sK /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/function_base.pyt <module> s (w